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ABSTRACT

;}0’\7 -

A self-contained optical system for the determination of position in inter-
planetary space is examined. The measured quantities are the angles between
pairs of celestial bodies. The specific problem studied is the selection of the
angles to be observed such that the uncertainty in position estimation, due to

noise in the measurements, is minimized.

The approach used is geometric. To reduce the amount of fuel required,
practical interplanetary vehicles will move in trajectories that lie close to the
ecliptic plane. The planets also move in orbits that lie close to the ecliptic
plane, Because of these considerations, it is possible to choose the stars used
in the optical sightings in such a manner that the determination of vehicle posi-
tion in the nominal trajectory plane is only loosely coupled to the determination
of position normal to the nominal plane, Moreover, such a choice of stars leads

to a relatively accurate determination of position.

For the determination of vehicle position in the nominal trajectory plane,
stars whose lines of sight lie close to the ecliptic plane are used; for position
determination normal to the nominal plane a star whose line of sight is approxi-

mately normal to the ecliptic is required.

A survey is made of all first-magnitude stars to determine which are most
useful for navigation purposes. Five of these stars have celestial latitudes
between -10° and +10° and thus qualify for use in determination of in~-plane
position. The star Canopus is the most useful for out-of-plane position deter-
mination.

An example is presented which illustrates the selection procedure that has

been formulated.

The procedure is so simple that the computations required can be carried
out manually without undue strain; yet the resulting accuracy of vehicle position

estimation is equivalent to that which can be expected from relatively eiaborate

computer programs that have previously been proposed.
prog p Y prop )4 Ufﬂé/z’
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SELECTION OF OPTICAL SIGHTINGS FOR POSITION
DETERMINATION IN INTERPLANETARY SPACE
By: Robert G. Stern, Staff Engineer, M.1. T.

1. Introduction

The object of this paper is to develop a sim-
ple technique for selecting the optical sightings
to be used in a self-contained navigation system
for an interplanetary space vehicle. Three or
more measurements of the angles subtended at
the vehicle between the lines of sight to pairs of
easily visible celestial bodies, if made in a rela-
tively short time interval, can be used to com-
pute the position of the vehicle at some specific
time in the interval. Since all measurements
are subject to some uncertainty, it is desired to
pick those sightings which, for given uncertain-
ties in the angular measurements, produce the
smallest uncertainty in the computed estimate of
position.

A general mathematical analysis of the use
of an angular sighting in the determination of
spatial position is presented in Appendix A; this
problem has been treated in the literature by
Larmore(l)* and by Haake and Welch(z), among
others.

Battin(3) has used linear perturbation the-
ory in the determination of position from angular
sightings. A summary of this theory is contain-
ed in Appendix B,

The approach to be presented herein for
selecting the sightings differs from previous ap-
proaches in that it exploits the peculiarly favor-
able geometric characteristics of practical inter-
planetary flight to produce a selection method
that achieves the same order of accuracy as the

previous methods in a somewhat simpler manner.

2, Background and Assumptions

A space vehicle is assumed to be in the mid-
course phase of its journey between two planets.
The nominal trajectory of the vehicle has been
precomputed before the inception of the voyage.
Due primarily to errors in the velocity of injec-

tion into the heliocentric orbit and secondarily

* :

Superscript numerals enclosed in paren-
theses refer to similarly numbered items in the
References.

to inaccuracy in the knowledge of the required
astronautical constants, the vehicle's actual tra-
jectory differs slightly from the reference tra-
jectory. An on-board optical system, capable of
measuring angles between lines of sight to celes-
tial bodies, is used to determine position on the
actual trajectory at a specified time,

The clock aboard the space ship is assumed
to be ideal; therefore, the time of each measure-
ment is known exactly. The position and velocity
of the vehicle on the nominal trajectory, as well
as the position and velocity of each of the planets,
are known functions of time. The line of sight to
each star used in the measurements is known; the
effect of parallax on star sightings is neglected.

The specific angles to be measured and the
time interval during which the measurements are
to be made are preselected. The angles that
would be measured if the vehicle were on the
nominal trajectory and if the instrumentation
were ideal are precomputed and stored in the on-
board computer. The differences between actual
and nominal angles are processed by the comput-
er to produce an estimate of the vehicle's posi-
tion deviation from the nominal trajectory at some

instant of time in the measurement time interval.

3. DPosition Determination from Three Angular

Measurements

In Appendix B linear perturbation theory is
used to show that the variation of an on-~board
angular measurement from the nominal value
that would be read if the vehicle were on its refer-
ence trajectory is related to the position varia-
tion of the vehicle at the time of the measurement

by the vector equation

BA=h * br (3. 1)

where 6A is the angle variation, 6r is the vector
variation in vehicle position, and the geometry
vector h is determined by the two bodies used in
the angular sighting. (Underlining a symbol is

used to signify a vector.)



When the nominal measurement angle A is
the angle subtended at the vehicle by the lines of
sight to two bodies in the solar system, h is given

by
h=—+_— (3.2)

where n, and ngy are unit vectors in the plane con-
taining angle A, the former perpendicular to the
line of sight to body P1 and the latter perpendicu-

lar to the line of sight to body P,, as shown in

Figure 1. n, is positive in the c?irection in which
P1 would rotate in order to reduce the magnitude
of A; similarly, n, is positive in the direction in
which P2 would rotate to reduce the magnitude of
A. Vectors 2 and Zgs with magnitudes Z and
2y, are the position vectors of P1 and P2, re-
spectively, relative to the nominal vehicle loca-
tion at S.

The actual vehicle location at the nominal
time of the measuremeant is S', which does not,
in general, lie in the plane containing A. Thus,
ér does not lie in this plane, and neither does
the actual measurement angle (A + 8A),

From Equation (3. 1), 6A is equal to the
component of &r in the direction of h, divided by
the magnitude of h. It is shown in Appendix B
that the magnitude of h is

2¢
12

z

(3.3)

2

where 2c¢ is the distance of P2 from Pl'
When P2 is a star, Zg and 2c are effectively

infinite. Equation (3.1) is still valid; Equations

(3.2) and (3.3) reduce to

n

o

ho= L (3.24)
1

h, o=l 3.3A

i z1 (3. )

where the subscript i signifies that one of the
sighted bodies is at infinite distance.

Three angle measurements, involving three
different h vectors, are required to determine
6r. In matrix form, the relation of the three

angle deviations to 6r is

T

°4, b

sa, | = | T or (3.4)
T

bA; by

The vectors are all to be taken as column vec-
tors. The superscript T denotes the transpose
of a column vector or a matrix. In shorter nota-

tion, Equation (3. 4) may be written as

%
A = H, ér (3.44)

3

where the vector 6A is the array of angle varia-
* 2

tions and H3 is a three-by-three matrix. The

asterisk over a capital letter signifies a matrix.

%
As long as H, is non-singular, (3.4A) can be

3
solved for or.

br = }13“1 BA (3.5)
where the superscript -1 denotes the inverse of
a matrix,

The accuracy of the estimate of 6r obtained
from (3.5) depends primarily on the accuracy of
the angle-measuring equipment. There is also a
small position inaccuracy due to inaccuracy in
the space vehicle's clock; the latter effect is
neglected in this analysis. Let 5A be the value
of the angle variation inferred from an angular
measurement and 8A be the 'true' angle varia-
tion. The difference between the two is a, the

uncertainty in the measurement.
6A = 8A + a (3.6)

For the three measurements used in computing

6r, the following vector equation may be written:
5A = 8A +a (3.7)

The three elements of a are random variables
that are assumed to be normally distributed with
zero means. The individual elements are as-
sumed to be independent of each other. The stan-
dard deviation of each element is assumed to be
known a priori. The covariance matrix of the
measurement uncertainties is an indicator used
to assess the accuracy of the estimate of posi-
tion from the three angular sightings. T}ais three-
by-three symmetric matrix, designated U3, is

defined as follows:




2

< a.l > <a1a2> <a.1a3>

%

_ T, _ 2

U3 =<aa">-= <a2a1> <a2 > <a2a3>

<a,a,> <a,a,> <a 2>
371 372 3
(3.8)

Subscripts 1, 2, and 3 inside the matrix refer to
the individual measurements. The angular
brackets indicate the average value of the
bracketed quantity. Since the uncertainties are
uncorrelated and have zero means, 63 is a di-
agonal matrix.

The estimated position variation vector is
designated GE to distinguish it from the true
position variation ér. The difference between

the two is the position uncertainty vector € .

~

6r

]

ér + ¢ (3.9)

By analogy with Equation (3.5), € is related to
a by the equation

x -1

e=Hy, ' a (3.10)

The covariance matrix of the uncertaintyin posi-

tion is
* * _ *
E-<ee™>=<f laala;™hs>
(3.11)
% 1% % 1T
N H3 U3 (H3 )

For most practical cases the assumed stand-
ard deviation is the same for all angular meas-
urements. Then,

2 2 2 2
<a,"> = <a,"> =<a "> =0 (3.12)

where 0 is the standard deviation expressed in
radians, When (3, 12) is valid, Equations (3. 8)
and (3. 11) reduce to

* 2 b3

U, = o’ I (3.84)
b3 L % -

E-o® @7, ! (3.11A)

*
where 13 is the three-by-three identity matrix.
%
Matrix E is used in Sections 5 and 6 in the
development of a specific criterion for the ac-

curacy of the position estimate,

4. Position Determination from Redundant

Measurements

When more than three measurements are
used to determine vehicle position at time t,
some statistical technique is used to obtain an

optimal estimate. Potter and Stern(4) have

shown that, under the assumption of Gaussian
distribution of measurement uncertainties, two
widely used techniques, one developed from
maximum likelihood theory and the other from
optimum filter theory, lead to the same estim-
ate in position, When the measurement uncer-
tainties are uncorrelated and have zero means,
the maximum likelihood estimate is the same as
that obtained from the method of least squares.

For N measurements, N being greater than

three,
oAl b
: = ér (4.1)
PAN et
In the simpler notation
6A = Hy br (4.14)

where 6A is a vector with N components and ﬁN
is a matrix with N rows and three columns. The
covariance matrix ﬁN of the measurement uncer-
tainties is the N-by-N symmetric matrix given

by

T.

*
UN =<a a> (4.2)

From Reference (4) the maximum likelihood

estimate of or is
~ X
br = F 8A (4.3)

*
where the filter matrix I is defined as

® ok Pk 1%k -] %k T X _]
F = (HN UN HN) HN UN (4.4)
The error in the estimate is
*
€ =Fa (4.5)

and the covariance matrix associated with € is

T. *T TXx -1% -1
> F o= UN HN)

*® X b3
Bacee>=FUy iy

(4.6)

When the standard deviation of each measurement

is equal to o,

* 2 %

Uy =0 Iy (4.2A)
3 ~ X T x -1 % 7T

F = (Hy Hy) ~ Hy (4.4A)
% 2 X T X -1 .
E = o (Hy Hy) (4.6A)

<
IN is the N-by-N identity matrix. Equations

(4.2A) and (4.6A) are analogous to (3.8A)and
(3.11A), respectively.



5. Statistical Theory

The probability density of the error vector€
is defined as the joint probability density of the
simultaneous occurrence of the three components
of €. With subscripts 1, 2, and 3 denoting the
components of ¢ and with p () indicating the
probability density of the argument within the pa-

rentheses,

ple) = p(el)- p(ez)- p(eB) (5.1)

The points on the locus of constant p (¢) form a
closed surface centered at € = 0. This surface is

an ellipsoid, known as the equi-probability ellips-

oid, .
ple) is related to the covariance matrix E

by the equation
expl-5 ¢ TE T €]

L2m) | B[y 1/2

(€)= (5.2)
where lEl is the determinant of E. The equation
of the equi-probability ellipsoid is obtained by
equating the argument of the exponential in (5.2)
to a constant.

el B le = B2 (5.3)

The probability that the tip of the vector €
lies either within or on the surface of a given
equi-probability ellipsoid is a constant. A par-
ticularly useful ellipsoid is that for which this
probability is 0.5; this ellipsoid is known as the
50% probability ellipsoid. For it the value of B

is 1,5382,

The volume of the equi-probability ellipsoid
is

w1 g
V=%7rB3|]§f| /2 (5.4)

For the 50% probability ellipsoid,
o1
_4 3% /2
Vg 5= 5 7(1.5382)" | E| / (5.5)

For the deterministic case, when only three

angular measurements are made,
1= 1 1] - i

02
1

0]

(5.86)
2 2
D2

715

where U 2, and cr‘3 are the standard deviations

of the three measurements. If all three measure-
ments have the same standar‘d deviation ¢,

(5. 6A)

l”l

) When there are redundant measurements, the
ITI matrix is not square; hence, the separation of
the determinant of the matrix product into the
product of the determinants of the individual ma-

trices cannot be effected.

| £]-

1
TR (5.7)
TU 1

INNHN|

el

When all measurements have equal 0's,

| ] - o’ 5.7A
TETET (678
N N

Either of two numbers may be used as a sin-
gle figure of merit relating to the accuracy of the
position estimate. The first of these, the spheri-
cal probable error SPE, is defined as the radius

of the sphere whose volume is equal to VO 5"

wy 1/6
SPE = 1.5382 | E| (5. 8)
The second, the root-mean-square error RMSE,
is defined by the relation

1
RMSE 1.5382(441«1?5)/2

3
(5. 9)

I

.1
0.888 (tr B) /2

where tr signifies the trace of a matrix. The
RMSE is equal to the root-mean-~square of the
principal axes of the 50% probability ellipsoid.
Both the SPE and the RMSE are invariant
under any orthogonal coordinate transformation.
If such a transformation is performed to convert
E into the diagonal matrix D and if the dlagonal
elements are designated diz, djz, and dk , the

principal axes of the 50% probability ellipsoid are

equal to 1. 5382 di‘ 1.5382 d, and 1. 5382 dk’ re-
J
spectively. The two error criteria are
. . /3
SPE = 1.5382 (didj d) (5. 8A)
2 2. 2lp
RMSI = 0.888 (d," +d,"+d,.%) (5.94)




Ifdi=d.=d

i K’ the ellipsoid reduces to a sphere,

and

SPE = 1.5382d; = RMSE (5. 10)

6. Selection of Sightings - General Considera-

tions

For greatest accuracy of position estimation
the angular sightings are to be chosen such that
the elements of the diagonalized covariance ma-
trix ]3 are as small as possible and as nearly
equal as possible.

If three sightings, all with the same value of
o, are used, ‘ ﬁ3T H*SI

is achieved by making the h vectors as large in

is to be maximized; this

magnitude as possible and as nearly mutually
orthogonal as possible. If it were possible to
make the three vectors exactly orthogonal, each
measurement would yield a component of ér in a
direction perpendicular to the components deter-
mined from the other two measurements. The
largest magnitudes of the h vectors are normally
obtained from sightings on the celestial bodies
nearest to the vehicle.

The projection of 6r in the plane normal to
the line of sight from the vehicle to the nearest
celestial body can be determined with relatively
high accuracy if the first two sightings measure
the angles between the line of sight to the near-
est body and the lines of sight to each of two
stars, the stars selected being those for which
the h vectors of the two sightings are as nearly
Both

h vectors are perpendicular to the unit vector, to

perpendicular to each other as possible.

be designated a, which lies along the line of sight
from the vehicle to the nearest body. To obtain
any information about the component of ér paral-
lel to a, it is necessary that the third sighting
involve a second near body; it may be a measure-
ment of the angle between the second near body
and the nearest body, between the second near
body and some third near body, or between the
The third sighting
is chosen to maximize ' §3T IiiB | ; normally it

second near body and a star.

will be the sighting for which h * a is a maximum.
{In this discussion, the possibility of measuring
the nearest body's angular diameter has not been

considered, because the vehicle's distance from

the nearest body is assumed to be large enough
so that little meaningful information can be ob-
tained from such a measurement. )

Due to the fact that the component of br par-
allel to the line-of-sight vector a is determined
from a sighting on a body that is farther away
than the nearest body, the uncertainty in this
vehicle position component is greater, sometimes
much greater, than the uncertainty in the compon-
ents lying in the plane perpendicular to a. Any
redundant measurements that may be made are
designed to maximize ﬁNT ﬁNI ; normally this
means that they are the sightings for which the
values of h * a are maximized.

The foregoing discussion indicates that the
selection of near bodies to be used in the sight-
ings is fairly straightforward. The number of
bodies that are ''near'' enough to supply accurate
position data is limited; usually there are only
two or three. The nearest may be used for two
basic sightings; another near one is required for
the third basic sighting. Optimum redundant
sightings usually involve near bodies other than
the nearest. The situation with regard to the se-
lection of stars to be used in the sightings is much
more complex. The number of stars easily visi-
ble and recognizable from the space vehicle is
quite large. It is obviously impractical to try to
formulate a selection procedure which attempts
to consider all the possible sightings involving
the two or three near bodies and all the easily
recognizable stars. In the next section a selec-
tion technique is proposed in which only a rela-

tively small number of sightings need be studied.

7. Selection of Sightings - Practical Considera-

There are two geometric considerations,
both concerned with orientation relative to the
ecliptic plane, that are of great significance in
establishing an effective procedure for selecting
sightings. In the first place, the group of bodies
from which the near bodies are chosen consists
of the sun, the brighter planets, and possibly the
earth's moon (when the vehicle is near the earth),
The sun is always in the ecliptic plane; the other
near bodies all move in orbits whose planes are

inclined only slightly to the ecliptic plane,



Secondly, in order to take full advantage of the
rotational motion of the earth about the sun, all
practical interplanetary trajectories lie in planes
inclined only slightly to the ecliptic plane.

The consequence of these two factors is that
the lines of sight from the vehicle to each of the
near bodies used in the sightings are, under most
circumstances, at small inclinations to the eclip-
tic plane. This generalization is not valid during
the launch phase, the terminal phase, or the fly-
by phase of an interplanetary mission, when the
vehicle is very close to one planet, but it is valid
in the midcourse phase, and the selection proce-
dure being developed is intended to be used pri-
marily for position determination during mid-
course.

If the lines of sight from the vehicle's nomi-
nal position to the near bodies were exactly in
the ecliptic plane at all times, there would be the
possibility of computing the component of posi-
tion variation &r that is normal to the ecliptic
plane completely independently of the computa-
tion of the two components of &r in the ecliptic
plane. This could be accomplished if at least
one visible star could be found whose line of
sight is normal to the ecliptic plane and if at
least one visible star could be found whose line
of sight lies in the ecliptic plane.

The angle between the line of sight to a near
body and the line of sight to an ecliptic pole star
would be 90° if the vehicle were on its reference
path, regardless of the time of the measurement.
The plane of the measurement would be perpen-
dicular to the ecliptic plane. In the vehicle-
centered ecliptic (XE YE ZE) coordinate sys-
tem, the geometry vector h would lie along the
ZE - axis, and any variation A of the measured
angle from 90° would be directly proportional to
the component of 6r along the ZE - axis and in-
dependent of the components of ér in the ecliptic
plane,

For the measurement of the angle between
the line of sight to a near body and the line of
sight to a star whose line is in the ecliptic plane,
h would be in the ecliptic and perpendicular to
the line to the near body. A measurcd angle

variation &A would be proportional to that

component of é6r lying in the ecliptic and perpen-
dicular to the 1i_ne to the near body; it would be
independent of the component of 6r in the ZE
direction.

If the first two measurements were those
described above and if the nearest body were used
in both, two orthogonal components of ér would be
determined, and the remaining component would
be parallel to a, the unit vector along the line of
sight to the nearest body. This component would
be in the ecliptic plane. To determine the third
component, the third sighting would measure the
angle between the lines of sight to two near bodies
or between the lines of sight to a near body other
than the nearest body and a star whose line is in
the ecliptic plane. The star would normally be
the same as the one used in the second sighting,
although it could be any star whose line lies in
the ecliptic. The particular sighting chosen for
the third measurement would be the one for which
the magnitude of h - a is a maximum,

Because the uncertainty in the estimate of
the component of ér along a would be greater than
the uncertainty in the other two components after
the first three measurements were completed,
any redundant measurements used would be taken
from the group considered for the third measure-
ment. Each succeeding sighting would be that
one not yet selected for which the magnitude of
h . ais greatest.

The idealized conditions mentioned in the
preceding paragraphs never occur in practical
cases. The nominal lines of sight from vehicle
to near bodies do not lie exactly in the ecliptic
plane. The lines of sight to none of the more
prominent stars lie either exactly normal to or
exactly in the ecliptic plane. Thus, the actual
procedure for sighting selection is more involved
than that indicated for the ideal situation.

The object of the first sighting is to minimize
the uncertainty in the component of ér along the
ZE - axis. To accomplish this in a practical
case, a survey is made of the brightest stars, and
only those stars for which the magnitude of the
celestial latitude is closest to 90° are considered.
The h vector for the sighting involving the near-

est body and each of these quasi-pole stars is




computed. The sighting selected for the first meas-
urement is that for which the magnitude of the com-
ponent of hin the directionof ZE is a maximum.

The second sighting is intended to minimize
the uncertainty in the component of ér normal to
the h vector for the first sighting and in the plane
normal to a. The stars considered for this sight-
ing are those for which the magnitude of the celes-
tial latitude is closest to 0°. The h vector of the
sighting involving the nearest body and each of
these "'in-plane' stars is computed, and the se-
lected sighting is the one for which the magnitude
of the scalar product of the h vectors of the first
two sightings is a minimum.

The third sighting and any redundant sight-
ings are chosen to reduce the uncertainty in
the component of dr along a. Sightings involving
available pairs of near bodies are considered,
also sightings involving near bodies other than
the nearest and the "in-plane' stars considered
for the second sighting. The sightings selected
are the ones with maximum magnitudes of h - a.

It is conceivable that the configuration of the
near bodies at the time of the measurement is
such that after one or two redundant measure-
ments the uncertainty in the component of ér
along a is less than the uncertainty in other com-
ponents. It would then be desirable to modify the
selection procedure used for any additional meas-
urements to favor the component of 6r which then
has the largest uncertainty. In the interest of
simplicity, such a procedure is not considered
here. In any case, it is assumed that the num-
ber of redundant sightings is small - normally

not greater than three.

8. Survey of First-Magnitude Stars

The performance requirements of the space
vehicle's optical system are simplified if only
the relatively bright celestial bodies are used for
the angular measurements. Therefore, only
celestial bodies whose apparent brightness as
seen from the vehicle is at least as great as that
of the dimmest first-magnitude star will be con-
sidered. In the case of the near bodies this con-
straint presents no difficulty, since, if a body is
near enough to be useful for measurement pur-

poses, it is near enough so that its apparent

brightness is at least equivalent to that of a first-
magnitude star.

There are 22 first-magnitude stars, that is,
stars whose brightness as seen from the solar
system is greater than that of a star with apparent
visual magnitude of 1.5. These stars have been
studied to determine which are suitable as ecliptic
"pole" stars and which are suitable as ecliptic
"in-plane'’ stars. The results of the study are
contained in Table 1, in which the stars are num-
bered in order of decreasing apparent brightness,
the brightest being number one. The brightness
data are taken from Table 11.1I of Reference (5).

The computed data for each star consist of
the direction cosines myp, Myp, Mzp of the line-
of-sight vector from the solar system to the star,
expressed in the ecliptic coordinate system, and
also the celestial longitude and the celestial lati-
tude of the star. The computations are based on
values of right ascension and declination taken
from the section entitled "'Mean Places of Stars,
1962. 0" in Reference (6) . The value used for the
obliquity of the ecliptic is 23. 444 degrees. Figure
2 is a polar plot of the star locations on the celes-
tial sphere.

Canopus, the second brightest star, is best
situated to be an ecliptic pole star. Other possi-
bilities, for each of which the magnitude of the
celestial latitude is approximately 60 degrees, are
Vega (5), Deneb (19), and Achernar (9). Five of
the stars are at celestial latitudes between -10°
and +10° and thus are considered useful as eclip-
tic in-plane stars. In order of increasing magni-
tude of latitude they are Regulus (21), Spica (16),
Antares (15), Aldebaran (13), and Pollux (18).

9. Selection of Sightings — A Detailed Procedure

On the basis of the foregoing discussion it
is now possible to formulate in detail a method
for selecting the angular sightings to be used for
position determination.

The sightings to be considered for the first
measurement are

1. Nearest body — Canopus

2, Nearest body - Vega

3 Deneb

4. Nearest body - Achernar

t

Nearest body
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The sighting selected is that one for which
th -+ k|is a maximum, where k is a unit vector
parallel to the ecliptic polar axis.

The sightings considered for the second
measurement are

1. Nearest body — Regulus

2. Nearest body - Spica

3. Nearest body — Antares

4. Nearest body — Aldebaran

5. Nearest body — Pollux
The one selected is that for which |h, - EQI is a
minimum, where El is the geometry vector of
the sighting already chosen from the first group
and 11.2 is the geometry vector of the sighting to
be chosen from the second group.

The third measurement is picked from the
following set of sightings:

1. Nearest body — second nearest body

2. Nearest body - third nearest body

3. Second nearest body - third nearest
body
Second nearest body ~ Regulus
Second nearest body - Spica
Second nearest body - Antares

. Second nearest body — Aldebaran

0 =1 O

Second nearest body - Pollux
9. Third nearest body — Regulus

10. Third nearest body - Spica

11. Third nearest body - Antares

12, Third nearest body — Aldebaran

13. Third nearest body - Pollux
The sighting selected is the one for which the
projection of the geometry vector in the direc-
tion of the line of sight to the nearest body is of
maximum length; i.e., the one for which
|g ©a Iis a maximum,

If redundant measurements are used, they
are to be chosen from among the sightings con-
sidered for the third measurement. The selec-
tion criterion is the same as that for the third
measurement; the sightings selected are those
for which|h - 3' is largest.

It will be noted that a particular angle is
never measured more than once, even though
it may appear that repeated measurements of
the same angle will result in a smaller volume

of the equi-probability ellipsoid than that

obtained from the suggested procedure. The
reason is that the assumption of independent un-
certainties, upon which this analysis is based, is
hardly justifiable for repeated measurements.
There is no practical method of filtering out un-
known instrumentation biases or low-frequency
random errors, which would usually have a more
deleterious effect on accuracy if some of the
measurements were repeated.

The proposed selection procedure involves
the computation of a total of only twenty-two
geometry vectors; each of the twenty-iwo is
tested only once. It is for this reason that the
procedure is regarded as simple; in fact, it is
simple enough so that all the cor.nputations re-
quired for making the selections (not for deter-
mining the covariance matrix E and the error
criteria SPE and RMSE) can be performed man-

ually on a desk calculator without undue strain.

10. Ilustrative Example

To illustrate the selection procedure, a
numerical example has been prepared. The
basic data for the example are taken from Ref-
erence (3). Table 5.1 of the reference contains
data for four interplanetary trajectories. The
numerical example selects the sightings and
computes the accuracy of the position estimate
at a point on the fourth trajectory, an Earth-
Venus trajectory for which the time of departure
is April 19, 1964 and the time of flight is 0. 30
year. The computations apply to vehicle position
0. 20 year after launch.

Figure 3 shows the position components in
the ecliptic plane of the lines of sight to the
near bodies (Venus, Earth, and Sun) from the
vehicle's nominal position. Also shown are the
projections in the ecliptic plane of the lines of
sight to the five in-plane stars. Table 2 shows
the distances of the near bodies from the vehicle
and the celestial latitudes of their lines of sight.

This numerical example is somewhat ex-
treme from the standpoint of indicating the
effectiveness of the new procedure. The tra-
jectory is one that arrives at Venus when that
planet is approximately at its maximum distance
below the ecliptic plane; therefore the hyperbolic

excess velocity at injection into the interplanetary



orbit has an unusually large component in the
direction normal to the ecliptic plane (-7529 feet
per second). At the time of the measurements
the vehicle is ten million kilometers below the
ecliptic, and Venus, the nearest body, is three
million kilometers below; the resulting inclina-
tion of 27.7° of the line of sight between the
vehicle and Venus is a difficult test for a theory
whose primary premise is that the lines of sight

are inclined only slightly to the ecliptic.

Table 2. Data for Near Bodies.

Celestial Latitude
Distance from of Line of Sight
Near Body Vehicle (km) (deg)
Venus 14.8 X 106 27.17
Earth 37.6 X 106 15.5
Sun 121.9 x 10° 4.7

The uncertainties in all angular measure-~
ments are assumed to be statistically independ-
ent with zero mean and standard deviation of 50
microradians (approximately 10. 3 seconds of
arc).

As a basis for comparison of the proposed
selection procedure with some that have pre-
viously been employed, the accuracy of each of
the six strategies shown on Page 252 of Refer-
ence (3) has also been computed. Six sightings
are used in each of these strategies, and six
have also been chosen in accordance with the
new procedure.
in Table 3.

The sightings used are listed

The older strategies differ from the pre-
sent proposal in several respects. Only the ten
brightest stars are considered; since the bright-
est of the in-plane first-magnitude stars is num-
ber thirteen, Aldebaran, it is not possible for
these strategies to utilize the in-plane and‘out-
of-plane geometry upon which the present method
is based. The overall strategy encompassing the
six individual strategies requires the determina-
tion of the root-mean-square error for each of
the six and the final selection of that one for
which the RMSE is a minimum, No sighting is
made on a star or planet whose line of sight lies
within 15° of the line of sight to the sun; also, no

measurement is made of the angle between the
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Table 3. Sightings Used for Position
Determination
Strategy First Body Second Body

Venus Rigel
Venus p Centauri

1 Venus Sun
Earth Capella
Earth Procyon
Sun Earth
Venus Rigel
Venus B Centauri

9 Venus Sun
Sun Capella
Sun Rigel
Sun Earth
Sun Capella
Sun Rigel

3 Sun Venus
Venus Rigel
Venus B Centauri
Sun Earth
Sun Capella
Sun Rigel

4 Venus Sirius
Venus Capella
Sun Venus
Sun Earth
Sun Capella
Sun Rigel

5 Sun Venus
Venus Achernar
Venus Procyon
Sun Earth
Earth Capella
Earth Procyon

6 Venus Arcturus
Sun Earth
Venus g Centauri
Sun Venus
Venus Canopus
Venus Spica

Proposed Earth Sun

Venus Earth
Earth Pollux
Earth Regulus

lines of sight to two planets. The selection
procedures used in each of the six individual
strategies are described on Pages 246 to 248 of
Reference (3).

The new method, as utilized in the present
sample calculation, does not discriminate against
sightings on bodies whose lines of sight are close
to that of the sun (although it could easily be
made to do s0), and it permits measurements
involving two planets. ‘T'he star Pollux, used in

the fifth sighting of the proposed strategy, would




not have been used if the 15-degree criterion
were in effect. Also, the fourth measurement is
the angle between the lines of sight to two planets,
Venus and Earth,

The amount of computation required by the
older strategies is significantly greater than that
for the new method, inasmuch as six different ﬁ
matrices must be determined and their traces
compared before a final selection is made.

The numerical results of the investigation
are shown in Table 4. For each strategy the
data presented are the lengths of the three axes
of the equi-probability ellipsoid, the spherical
probable error, and the root-mean-squareerror.
These data are given for the first three sightings
of each set and also for all six sightings of each
set,

When only three sightings are used, the pro-
posed method results in a lower spherical prob-
able error and a lower root-mean-square error
than any of the previous methods. For sixsight-
ings the proposed method yields the lowest spher-
ical probable error, but two of the six older
methods give lower values of the root-mean-
square error.

In the case of the six sightings, the choice

of which strategy is "'best' apparently depends

' This anomalous

on the criterion of "goodness. '
situation is due to the fact that the axes of the
equi-probability ellipsoid are so different in
length; in each case the longest axis is at least
five times as long as the shortest axis. None of
the strategies are capable of equalizing the axis
lengths. The RMSE criterion provides a heavy
penalty if the axis lengths are considerably dif-
ferent; the SPE criterion does not. The axis
lengths are so different in this example that a
reasonable approximation to the RMSE can be
obtained by neglecting the two smaller axes and
simply multiplying the length of the long axis by
0.6.

1t is the author's opinion that the RMSE is a
better criterion for position accuracy than the
SPE precisely because it is affected so strongly
by the longest axis of the equi-probability ellip-
soid. A cigar-shaped ellipsoid, with one long
axis and two short axes, is generally less desir-
able from an accuracy viewpoint than a nearly
spherical ellipsoid whose volume is slightly
greater than that of the cigar-shaped one.

The configuration shown in Figure 3 indicates
the interesting possibility that the sightings for
the new procedure might be selected graphically,

without any exact computation of geometry

Table 4. Numerical results for seven sighting strategies -- all distances in kilometers.
Axes of Equi-Probability Ellipsoid
Strategy Largest axis I Middle axis | Smallest axis SPE RMSE
Three Sightings
1 28,737 3,466 788 4,282 16,718
2 28,737 3,466 788 4,282 16,718
3 37,268 13,526 1,286 8,655 22,902
4 47,163 13,618 1,041 8,746 28,348
5 37,268 13,526 1,286 8,655 22,902
6 7,364 2,149 1,917 3,119 4,565
Proposed 6,092 1,840 958 2,207 3,716
Six Sightings
1 5,074 1,379 752 1,739 3,067
2 5,575 1,779 718 1,976 3,408
3 5,575 1,779 778 1,976 3,408
4 5,731 1,763 800 2,007 3,493
5 13,191 1,882 671 2,553 7,703
6 4,424 1,382 850 1,732 2,721
Proposed 5,415 985 859 1,661 3,216
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vectors. The first measurement, for which the
sketch is not needed, would always be nearest
body-Canopus (in this case Venus-Canopus). The
second would pair the nearest body and the in-
plane star whose line of sight is most nearly
perpendicular to the line of sight to the nearest
body; from the figure the bodies would be Venus
and Spica. The remaining measurements would
be/those for which the geometry vectors, which
could be sketched in graphically, would have the
largest projections along the line of sight to the
nearest body. They would involve combinations
of near bodies, or the second nearest body and
in-plane stars with lines of sight nearly perpen-
dicular to the line to the second nearest body, or
the third nearest body and in-plane stars whose
lines of sight are nearly perpendicular to the
line to the third nearest body. In this example
the line of sight to the third nearest body, the
sun, is nearly parallel to the line to the nearest
body, Venus; therefore, sun-star measurements
are not desirable., On the basis of these con-
siderations, the additional measurements would
be Earth-Regulus, Earth-Venus, Earth-Pollux,
and Earth-Sun. Although not in the same order,
this set of measurements is identical with that

shown for the proposed strategy in Table 3.

11. Conclusion

By exploiting the fact that the lines of sight
from the space vehicle to the nearest visible
celestial bodies are normally inclined only
slightly to the ecliptic plane, it has been possi-
ble to devise a simple, effective procedure for
selecting the angular sightings to be used for
determination of vehicle position. The amount
of computation required to make the selections
is relatively small. In fact, it is even possible
to make a reasonably good choice of sightings
graphically, with an absolute minimum of com-
putation,

Despite the fact that the numerical example
chosen provides an extreme test of the new se-
lection procedure, the position accuracy obtained
compares well with that obtained from previous
methods. It is anticipated that even more favor-
able results may be obtained when the new pro-

cedure is used in less extreme cases, i.e., when
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the lines of sight from vehicle to near bodies

have smaller inclinations to the ecliptic plane.
APPENDICES

A. Position Determination from On-Board

Angular Sightings

Figure 4 illustrates the position, at some
specified time, of a space vehicle relative to two
"near'' celestial bodies (i.e., members of the
solar system). The vehicle is at point S; the two
near bodies are at P1 and P2. The distances
from the vehicle to the near bodies are SP1 =z
and SP2 = Z,. The distance between the near
bodies is P1 P2 = 2 ¢. The X - Y coordinate
system in the figure lies in the plane of triangle
P1 S P2, its origin is at Pl’ and the X - axis lies

along P1 P The position coordinates of the

vehicle areZ(x, y). The auxiliary line SQ is per-
pendicular to P, PZ’

The angle to be measured from the vehicle
is 4 P, S P,,
is related to %, y, and c as follows:

which is designated A. This angle

tan A = tan (£ P, SQ+ X QS P,)

2cy
(A. 1)
(x—c)2+y2 .2

The equation of the locus of points of constant A
in the X - Y plane is

(x - ¢)2 +(y - ¢ cot A)2 = (c esec A)2 (A 2)

This is the equation of a circle with center at

(c, ¢ cot A) and radius equal to ¢ ecsc A. Thus,
the constant-measurement-angle loci in the X - Y
plane are arcs of circles whose centers all lie

9 The

three-dimensional constant-measurement angle

on the perpendicular bisector of P1 P

loci are the surfaces generated by rotating the

circular arcs about Pl P_; these surfaces are

known as ''navoids, " ?
The gradient surfaces are surfaces perpen-
dicular to the navoids. The equation of these
surfaces can be obtained from the slope of the
navoids, From Eq, (A-2) the slope of a constant-

angle locus is

d N X -c
(_c%f) A  Yy-ccotA (A.3)



Then the slope in the X - Y plane of the gradient

curve passing through (x, y) is

we-(2), - (8);

5 (A. 4)

x-c’ -y’ -c
2x-9y

where ¢ is the angle between the tangent to the
gradient curve and the X - axis. In order to
integrate this equation, the terms are rearranged

as follows:

2(x—c)ydy-y2dx 2[ c2 —l]dx

2 2
(x - c) (x - c)

(A. 5)

The integral is

y2 C2
e - " %x-¢ -(x-c)+ 2k (A. 6)

X

where k is a constant of integration. After re-
grouping,

(x-(c+k)2+y?=k?-c2=-R? (A.7)

This is the equation of a circle with center at

(c + k, 0) and radius R = k2 - c2. The magni-
tude of the constant k must be larger than ¢, but
it can have either a positive or a negative sign.
Thus the gradient curves are circular arcs
whose centers lie on that portion of the X - axis
which is outside the line segment P1 P2' The
three-dimensional gradient surfaces are the
spheres obtained by rotating the semicircular
arcs in the upper half of the X - Y plane about
P, P,.

Several constant-measurement-angle loci
and gradient curves in the X - Y plane are illus-
trated in Figure 5,

From Figure 6 it may be seen that ¢ is
equal to the angle between the Y - axis and the
radius OS of the gradient circle, The center O
of the gradient circle passing through S is the
point at which the tangent to the constant-angle
locus at S intersects the X - axis.

The sensitivity factor K associated with an
angular sighting is defined as the magnitude of
the ratio of the position error caused by a small

error a in the angular measurement, to the
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value of a itself. K, the measured value of the
angle, is related to A, the true value, by the equa-

tion

X=A+a (A.8)

The position error due to a is in the direction of
the tangent to the gradient circle at the point of
the measurement and is equal in magnitude to the
radius R of the gradient circle multiplied by 8,
the change in ¢ caused by a. Then,

Rp

a

K = (A. 9)

where the vertical bars signify the absolute value.
By taking first variations of the expressions

already developed for A and ¢, and utilizing the

geometric relationships of Figure 6, it can be

show that

wiiay

B.x-c (A. 10)
a c
Also,
R=—23Y (A.11)
|(x - c)] sin A
so that
Z1 %3
K=—Y_ = (A. 12)
sin A 2c

No vertical bars are needed in Eq. (A. 12) because
Ys Zys 29, C, and sin A are all positive quantities.

The sensitivity factor is directly proportional
to the distance of the vehicle from each of the two
near bodies being sighted and inversely propor-
tional to the distance of the near bodies from each
other. To minimize the sensitivity factor, it is
obviously desirable to use the nearest body in as
many of the measurements as possible, subject
to the constraints imposed by the three-dimen-
sional nature of the position determination
problem,

The angle between the line of sight to a near
body and the line of sight to a star is simpler to

analyze than the angle between the line of sight to



two near bodies. In fact, the equations of the
former can be obtained from those of the latter
by letting Z, and 2 ¢ approach infinity, To dis-
tinguish the characteristics of the near body-
star measurement from those of the measure-
ment involving two near bodies, the subscript i
(signifying that one of the bodies is at infinite
distance) will be appended to symbols referring
to the near body-star measurement,

In Figure 7 the line of sight P, B from near

body to star is parallel to S T, thelline of sight
from vehicle to star. The measurement angle
Ai is 25_’1‘SP1 in the figure. The X and Y axes
are shown, with the origin at Pl' The constant-
measurement-angle locus in the X-Y plane is a
straight line, passing through Pl’ whose inclina-
tion to the positive X - axis is the supplement of

Ai' The equation of the locus is

X=tan(7r-Ai)=-tanAi
X

(A. 13)

The gradient curves in the X - Y plane are con-

centric circles centered at Pl'

the gradient circle passing through S is

The equation of

(A. 14)

where the radius Ri is equal to z,, the distance

of the near body from the vehiclel.

In three dimensions the constant-angle loci
are cones with apex at P, and axis along P1 B.
If Ai lies between 0 and 7/2 radians, the cone
opens outward in the direction of the star, and
its half-angle is equal to Ai' If Ai is between
7/2 and 7 radians, the cone opens outward in
the direction away from the star, and its half-
angle is the supplement of Ai‘ The three-
dimensional gradient surfaces are concentric
spheres centered at Pl'

The inclination of the gradient circle at
(x,y) to the positive X - axis is

¢, =T~ A, (A. 15)

1

[

Thus, the sensitivity factor K, is
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(A. 16)

1}
N

Three independent angular measurements are
required to determine spatial position of the
vehicle as the common intersection of the three
three-dimensional constant-angle loci. Since
three measurements cannot be made simultaneous-
ly, provision must be made for determining the

change in the lengths Zy and ¢, and the change

z
2)
in the orientation of the plane of each measure-

ment, as a function of time,

B. Linear Perturbation Theory

When the departure of a space vehicle from
its reference trajectory is small throughout its
flight, linear perturbation theory is well suited to
the problem of position determination. Figure 8
illustrates the use of the theory in processing an
If the

space vehicle were on its reference trajectory,

angular sighting between two near bodies.

the measurement angle at time t would be
A =4 P, SP, Because of instrumentation dif-
ficulties inherent in the simultaneous tracking of
two moving celestial bodies, it is not practical
to stipulate that the measurement be made exactly
at time t. The measurement is actually made at
time (t + 7), where T is a relatively small time
interval, The actual measurement angle is
(A+ 8A") =&_P'1 S! Py

The displacements of the three bodies at
time (t + 7) from their nominal positions at time

t are

SS' = br+vgT (B. 1)
PiPy = yp T (B. 2)
PyPyc yp T (B. 3)

where 6r is the position deviation of the vehicle
from the reference trajectory at time t and the v
vectors are velociiies of the bodies with respecl
to the sun at time t.

The difference between the actual vector

S! P'l and the reference vector S P1 is




8z,'=S' P} - SP, =6z

2y 1~ g~ ¥p )7
(B. 4)
where

6_2_1 = - 6£ (B. 5)

The magnitude of 6z 1 18

Z bz !

bz =L 1 (B.6)

%1

Similar expressions can be written for 652',
6z,, and 622'.

The scalar product of the vectors forming
A is
=2yt 2572 2 cos A (B.7)
The first variation of this equation, correspond-
ing to the actual measurement angle (A + 6 A'),
is

. ' . ]
23 652 tzy 551

=2yt bzytzy - bzy —7 [z (¥s - ¥p )
+

22 * (&S - !P]_)]

=—zlz2sinA6A'+z cos Abz !

2 1
+z;cos A 6z2'
z; - 621‘
= —z 2z, 8in AbA'+z,cos A ——
172 2 zy
2z, 6z,!
+ Zl cos A_2____2___
%y
(B. 8)
The solution for bA' is
BA' = - —l—(m - m, cos A)
sin zy -2 =1
(6 -v T)
2 R’y
+%(r11 -mzcosA)'(ﬁ - YR T)]
2 2y T2
(B. 9)
where m, and m, are unit vectors along the

lines of sight from S to P1 and from S to P,,

respectively.
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|
m, = (B. 10)

1

z

_Z2
™y 2, (B.11)

v, and v,, are the relative velocity vectors of
Ry Ry

S with respect to P1 and P2.

Vg, T ¥s TP, (B-12)

Vo, =Vg -V (B-13)
—R2 -S —P2

Two new unit vectors n. and 9_2 are defined

1
by
=1 -
b T smA (1112 m, cos A) (B. 14)
1
N * S A (Iill - m, cos A) (B. 15)

is in the plane of the nominal measurement

[

the plane containing Pl’ S, and Pz) and is
perpendicular to m,. The positive direction of

n would be rotated

=1 1
(through the angle A, which is less than r radians)

is the direction in which m

to bring it into coincidence with m,. Similarly,
L) 2
direction in which m, would be rotated to ap-

is perpendicular to m, and positive in the

proach m With this new notation and with -ér

-
substituted for both 6?—1 and 652, Equation (B. 9)

becomes
n n
-1 -2
5A=6A'-’r<——'v 122 -y )
zy Ry zp Ry
n n
= (i + i) * 6[\
Zl 22 —_—
=h" br (B. 16)

8A is the "effective'' angle variation, i.e., the
angle variation due solely to ér. The term con-
taining 7 in (B. 16) can be computed directly,
since 7 for the given measurement is obtained
from the clock reading and the coefficient of 7
is a function of the reference trajectory, all of
whose characteristics are know. Thus, the
value 8A' obtained directly from the angular
measurement can be adjusted to yield dA, the
desired value.

The vector h in (B. 16) is known as the

"geometry vector, "



=

n
1, %2

1 %2

o
[l

(B. 17)

N

The variation 8A is a measure of the component
of 6r in the direction of h. Obviously, three such
components, in different directions, are needed
to specify dr completely in three-dimensional
space.

The magnitude of h is

1
h=(-h) /2 - _2¢ (B. 18)
= Z, Z
172
since o, and n, are unit vectors and
n, - n, = - cos A (B. 19)
As in Appendix A, 2 c is the distance of P, from

2
P.. By comparing (B. 18) with (A. 12), it can be

selen that the magnitude of h is the reciprocal of
the sensitivity factor K. Thus, a connection has
been established between the perturbation ap-
proach and the geometric approach to the naviga-
tion problem, It can also be shown that the di-
rection of h is parallel to the tangent to the grad-
ient circle passing through the point S on the
reference trajectory.

For the case of the measurement of the
angle between a near body and a star, Z, is
infinite, and the geometry vector is then
21

%1

h, (B. 20)
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Fig. 1. Geometry vector for measurement of angle between lines of

sight to two near bodies.
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Fig. 2. Celestial longitude and latitude of first magnitude stars.
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Fig. 3. Projection in ecliptic plane of near bodies and lines of sight

to "in-plane"
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Fig. 4.

Measurement of the angle between two near bodies.
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Fig. 5. Constant-measurement-angle loci and gradient curves for the

angle measured between two near bodies.
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Fig. 6. The angle ¢.
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Fig, 7. The angle measured between a near body and a star.
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- position of the sun

- position of space vehicle on reference trajectory at time t
- position of space vehicle on actual trajectory at time (t +17)
- position of first near body at time t

- position of first near body at time (t + T)

- position of second near body at time t

- position of second near body at time (t + T)

- nominal value of angle to be measured at time t

- angle actually measured at time (t + 7)

Comparison of actual and nominal measurements for angular

sighting between two near bodies.
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